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Abstract

Foundation models are large models pre-trained on
tremendous amount of data. They can be typically adapted
to diverse downstream tasks with minimal effort. However,
as foundation models are usually pre-trained on images or
texts sourced from the Internet, their performance in spe-
cialized domains, such as plant phenotyping, comes into
question. In addition, fully fine-tuning foundation models
is time-consuming and requires high computational power.
This paper investigates the efficient adaptation of founda-
tion models for plant phenotyping settings and tasks. We
perform extensive experiments on fine-tuning three founda-
tion models, MAE, DINO, and DINOv2 on three essential
plant phenotyping tasks: leaf counting, instance segmen-
tation, and disease classification. In particular, the pre-
trained backbones are kept frozen, while two distinct fine-
tuning methods are evaluated, namely adapter tuning (using
LoRA) and decoder tuning. The experimental results show
that a foundation model can be efficiently adapted to mul-
tiple plant phenotyping tasks, yielding similar performance
as the state-of-the-art (SoTA) models specifically designed
or trained for each task. Despite exhibiting great transfer-
ability over different tasks, the fine-tuned foundation models
perform slightly worse than the SoTA task-specific models
in some scenarios, which requires further investigation.

1. Introduction
Plant phenotyping aims to quantitatively evaluate struc-

tural and functional attributes of plants, which are crucial

across several domains in modern agriculture, such as crop

improvement, disease and pest management, and climate re-

silience [50]. In the past decade, deep learning has become

an important tool in different plant phenotyping tasks, such

as leaf counting and segmentation [14, 17, 20], root seg-

mentation [44, 49], wheat spikelet localization [7, 40], and
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Figure 1: Adapter and decoder tuning. We employ a pre-

trained frozen ViT backbone (MAE, DINO, or DINOv2)

and a task specific decoder (linear layer for classification

and counting, Feature Pyramid Network (FPN) + Mask

RCNN decoder for instance segmentation). In adapter tun-

ing, the parameters added by LoRA and the decoder are

both trainable, while in decoder tuning, only the parameters

associated with the decoder is trainable.

disease classification [41, 42].

However, the majority of these models are characterised

by a task-specific architectural design: while they are profi-

cient at performing the tasks for which they were designed

or trained, their performance decreases when applied to

other tasks. Such lack of versatility makes the implementa-

tion (and deployment) of deep learning models inefficient,

as new models need to be devised, developed, and trained

for each specific task. Recent development of foundational

models [4] is a promising avenue to solve this problem for

the plant phenotyping community.

Foundation models are models with substantial number

of trainable parameters and pre-trained on an extensive and

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
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the final published version of the proceedings is available on IEEE Xplore.
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diverse set of data, which have the potential to easily adapt

to a wide range of unseen tasks [4]. One famous example of

foundation models is ChatGPT [5], a large language foun-

dation model pre-trained on a vast amount of internet data

using autoregressive language modelling (that is, predicting

the next word in a sentence given all of the previous words).

ChatGPT has shown remarkable versatility in performing

novel tasks that it is not trained for, such as programming

and translation. In computer vision, a recent example of

foundation models is the Segment Anything Model (SAM)

[31]. SAM is pre-trained on a huge dataset called SA-

1B, comprising 11 million images supplemented with 1 bil-

lion mask labels, to perform prompted image segmentation

tasks. These two recent examples showcase the flexibility

and wide-ranging applicability of foundation models, span-

ning from natural language processing to computer vision.

Despite the benefits of foundation models, these mod-

els have two major constraints. First, foundation models

are typically trained on general domain data, lacking spe-

cialized and domain-specific knowledge. This limitation

becomes noticeable when foundation models are applied

to areas that differ from general context and applications,

such as medical imaging, industrial inspection and agricul-

ture [24, 28, 29]. Fine-tuning foundation models on new

data and tasks is promising to ease the effect of domain

shift. However, this leads to a second limitation: foundation

models are huge (in terms of parameters) and complicated.

As they are characterized by billions of trainable parame-

ters, fine-tuning such large models is time-consuming and

requires a hardware infrastructure that is prohibitive to the

majority of users in specialized domains.

Conversely, tuning only the task-specific decoder, such

as the linear layers for image classification, while freezing

the rest of the model, makes the transfer of large models to

novel tasks more feasible. However, decoder tuning may

lead to sub-optimal performance [16, 19]. In recent years,

there has been growing interest in the concept of parameter-

efficient fine-tuning (PEFT) as a solution to achieve the bal-

ance between tuning costs and performance [34]. Different

from decoder tuning, PEFT fine-tunes a small subset of the

parameters in the model backbone, while the majority of pa-

rameters in the backbone remain unchanged [13]. Adapters,

important members of the PEFT family, are newly inte-

grated trainable modules that fit between layers of a pre-

trained model [25]. These modules are powerful and effi-

cient, delivering comparable performance to full fine-tuning

while significantly lowering computational costs [9, 10, 27].

Thus, adapters provide a middle ground to efficiently fine-

tune foundation models to unseen scenarios and tasks, while

preserving their flexibility.

To alleviate the tedium and expense associated with de-

veloping task-specific models individually, the key objec-

tive of this study is to answer the question: Is it possi-

ble to tackle diverse plant phenotyping tasks by efficiently
fine-tuning pre-trained foundation models? To answer, we

focus on three leading foundation models based on vision

transformer (ViT) [15]: Masked Autoencoders (MAE) [21],

DINO [6] and DINOv2 [38]. We perform extensive ex-

periments to evaluate the performance of fine-tuning these

models using decoder tuning and a popular adapter, the

Low-Rank Adaptation (LoRA) [27], on the following plant

phenotyping-related tasks: leaf counting, instance segmen-

tation, and disease classification. Figure 1 summarizes the

methodology of this study. The datasets used in our exper-

iments are diverse and collected from both controlled and

in-field environments, which allows us to explore the effec-

tiveness and adaptability of foundation models under vari-

ous conditions. The main contributions of this work are:

1. To the best of our knowledge, this study is the first to

investigate the adaptation of foundation models (using

LoRA) on diverse plant phenotyping tasks. Our ex-

perimental work contributes to a critical evaluation of

these advanced methodologies, as well as establishes

valuable benchmarks in this field.

2. We also examine the circumstances under which foun-

dation models are a better fit for the considered plant

phenotyping applications. By also identifying and un-

derstanding limitations, our research provides crucial

insights that could inform and guide future develop-

ments of foundation models for plant phenotyping.

2. Related Work
This section reviews recent development of vision foun-

dation models and adapters. Below we mainly cover self-

supervised pre-trained foundation models as all the evalu-

ated models in this work belong to this class.

2.1. Vision Foundation Models

Foundation models are characterized by a large number

of trainable parameters and pre-trained with a big and di-

versified dataset [4]. In contrast to previous generations of

AI models that focused on addressing individual tasks se-

quentially, foundation models possess the ability to adapt to

a wide range of downstream tasks in various domains.

Building upon the success of large language models

[5, 12], the design of vision foundation models often lever-

age Vision Transformers (ViTs) [15] and self-supervised

pre-training techniques to excel in visual tasks. ViT oper-

ates by dividing an input image into patches and processes

them as a sequence of embedded vectors, thereby enabling

the model to identify and handle long-range correlations

throughout the whole image. Self-supervised learning is

a machine learning technique where models are trained to

learn representations from unlabeled data [36]. This is done
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by creating learning tasks from the training data themselves,

e.g. predicting a portion of an image given the rest of the

image. Self-supervised learning allows models to be pre-

trained on large-scale unlabeled data and to gain great trans-

fer ability to diverse downstream tasks. Below we briefly in-

troduce the mechanism of several ViT-based self-supervised

pre-trained foundation models.

Masked Autoencoder (MAE) [21]. MAE randomly

masks patches of an input image and trains an asymmetric

encoder-decoder model to reconstruct the original image.

The unique characteristic of the encoder is that it focuses

solely on encoding the unmasked patches into latent vec-

tors. In contrast, the decoder uses a combination of masked

tokens and encoded unmasked tokens to recreate the origi-

nal image. This approach has recently been proven success-

ful in the Segment Anything Model (SAM) [31], gaining

significant recognition in computer vision.

DINO [6]. DINO leverages self-distillation to train two

ViTs, referred to as the teacher and student models. These

models are structurally identical but with distinct parame-

ters. The input images to each model are perturbed with

random transformations, and DINO encourages the consis-

tency between the outputs of the two models, promoting the

learning of richer and invariant features. The latest version,

DINOv2 [38], further proposes a new pipeline for curating

large-scale datasets conducive to pre-training and distilling

more complex models. This pipeline improves the applica-

bility and scalability of DINO in diverse real-world settings.

BEiT [2]. Similar to BERT [12] used in natural language

process, BEiT begins its training process by tokenizing

the input images using a discrete variational autoencoder

(dVAE). It then masks random sections of the image, and

a ViT is trained to predict the original visual tokens cor-

responding to the masked image patches. To enhance this

methodology, the subsequent version, BEiTv2 [39], imple-

ments vector-quantized knowledge distillation for training

the tokenizer. This modification enables the tokenizer to

discretize a continuous semantic space, expanding beyond

the scope of low-level image pixels. The next advancement,

BEiTv3 [46], includes the integration of language, vision,

and multi-modal pre-training by unifying masked modeling

across images, texts, and image-text pairs, reflecting a sig-

nificant stride in multi-modal learning.

2.2. Adapters

Adapters are newly introduced trainable components that

are inserted between the layers of a pre-trained model [25].

Adapters consist of a small number of parameters, aim-

ing to efficiently adapt large models to diverse downstream

tasks with the pre-trained weights frozen. Recent works

[47, 16] demonstrate that adapters are not only compatible

with a wide range of tasks, but also capable of delivering

performance on par with (and sometimes surpassing) full

fine-tuning. Below we provide a brief overview of several

adapters that can be used on ViTs.

LoRA [27]. The hypothesis of the Low-Rank Adaptation

(LoRA) is that the weight modifications during model adap-

tation exhibit a low intrinsic rank. Hence, the authors of

LoRA propose to add pairs of trainable rank-decomposition

weight matrices to each layer of the Transformer structure.

AdaptFormer [9]. AdaptFormer introduces lightweight

side branches to the original MLP layers of ViTs. Within

this new branch, the features are sequentially passed to

down projection, ReLU activation and up projection. The

output of this branch are then connected back to that of the

original MLP layer using a residual connection.

ViT-Adapter [10]. ViT-Adapter is designed to effectively

adapt plain ViTs to dense prediction tasks such as object

detection and instance segmentation. To achieve this, three

new components are introduced, spatial prior modules, spa-

tial feature injectors, and multi-scale feature extractors, to

effectively integrate image-related and task-related induc-

tive biases into ViTs when adapting to downstream tasks.

The rapid development of foundation models and

adapters have benefited various research domains. How-

ever, the research of these advanced approaches and their

applications are still limited in plant phenotyping, which

motivates this work. The evaluated foundation models in

this paper include MAE, DINO and DINOv2 as MAE and

DINO are pre-trained on the same dataset (ImageNet-1k

[11]) with different training methods, while DINO and DI-

NOv2 are pre-trained on different datasets (DINOv2 is pre-

trained on a curated and larger dataset, LVD-142M [38])

using the same series of approach. LoRA, one of the most

popular adapters in both natural language processing and

computer vision, is adopted for adapter tuning.

3. Methodology
We investigate the potential of adapting foundation mod-

els to address multiple plant phenotyping tasks. To explore

this, extensive experiments are performed on three funda-

mental plant phenotyping tasks: leaf counting, segmenta-

tion, and disease classification. Decoder tuning and LoRA

are both investigated on three representative large-scale pre-

trained ViTs: MAE, DINO, and DINOv2. We now proceed

to detail the evaluated datasets and experimental setup.

3.1. Datasets

Leaf Counting and Segmentation. The CVPPP 2017 Leaf

Counting and Segmentation Challenge Dataset (denoted as

LCC and LSC below) [3, 37, 43] consists of RGB images of

plants captured in controlled environment, and spans four

domains denoted as A1, A2, A3, and A4. Domains A1,

A2, and A4 contain different mutants of Arabidopsis plants,

while domain A3 is composed of tobacco plants. In addi-

tion to A1 to A4, the test set of this dataset contains an extra
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domain, A5, where the images are a mixture, sampled from

the four preceding domains. The images of this dataset are

labeled with leaf counts and leaf instance masks. Table 1

summarizes the statistics of the CVPPP dataset, which ex-

hibits the diversity of the number of images and average leaf

counts in different domains.

Table 1: CVPPP 2017 dataset statistics under different do-

mains. The number of images and average leaf counts are

shown in the format of [training set / test set], while A5 ex-

ists only in the test set.

A1 A2 A3 A4 A5

Resolution 500 × 530 530 × 565 2448 × 2048 441 × 441 Mixed

Num. of imgs 128 / 33 31 / 9 27 / 56 624 / 168 235

Avg. leaf counts 16.3 / 17.1 9.3 / 11.1 5.4 / 6 13.7 / 13.2 11.4

Leaf Disease Classification. The Cassava Leaf Disease

Classification Dataset (denoted as Cassava below) [32] is a

collection of real-world field images captured in Uganda,

aimed at identifying various diseases found in Cassava

leaves. The training set of the dataset comprises 21,397 im-

ages with a resolution of 800×600 pixels, where each image

is categorized into one of the five classes representing the

health status of the Cassava leaf: Cassava Bacterial Blight

(CBB), Cassava Brown Streak Disease (CBSD), Cassava

Green Mottle (CGM), Cassava Mosaic Disease (CMD), and

Healthy (H). As shown in Table 2, the Cassava dataset ex-

hibits significant class imbalance, where the images classi-

fied to CMD occupies over 60% of the dataset. The test set

contains around 15,000 images held on Kaggle.

Table 2: The number of training images under different

classes of the Cassava dataset.

CBB CBSD CGM CMD H

Num. of imgs 1087 2189 2386 13158 2577

3.2. Experimental Setup

Figure 1 illustrates the model architecture and difference

between the tuning methods, with details explained below.

Model Components. The models evaluated in this study

are comprised two main components as shown in Figure 1

– a pre-trained backbone and a task-specific decoder. The

backbone is a ViT-base feature extractor pre-trained using

MAE, DINO, or DINOv2. The decoder for leaf counting

and disease classification is a linear layer placed upon the

backbone to regress the number of leaves or predict the

classes of diseases. The decoder for leaf segmentation is

adopted from ViTDet [33], consisting of a Feature Pyramid

Network (FPN) [35] to generate multi-scale features and a

Mask RCNN [22] decoder to predict instance masks.

Fine-tuning Methods. In our experiments, two distinct

configurations for each model is implemented, namely de-

coder tuning and adapter tuning. Under both configura-

tions, the pre-trained weights of the ViT-base backbone are

kept frozen. During decoder tuning, only the parameters in-

troduced by the decoder are trained. This setup examines

the direct adaptability of the foundation models, which has

not been exposed to the specific plant phenotyping datasets,

with minimum tuning effort. On the other hand, in adapter

tuning, LoRA is employed to fine-tune the backbone, so

the parameters added by both LoRA and the decoder are

trainable. This configuration investigates whether efficient

fine-tuning of the pre-trained backbone can yield superior

performance compared to decoder tuning. In addition, the

evaluated models are compared with SoTA models that are

specifically designed or trained for each task.

4. Experiments

Here, we discus experimental details and results on the

three evaluated tasks. Decoder tuning is denoted as DT, and

the evaluated models are reported in the form of “model-

tuning method”, where model ∈ {MAE, DINO, DINOv2}
and tuning method ∈ {DT, LoRA}. All three foundation

models are evaluated on leaf counting and disease classifi-

cation, while only MAE and DINO are examined on leaf

segmentation. Following the best practice [27], when using

LoRA, only the query and value projection matrices in the

attention blocks of a ViT are updated, with the rank set to 8.

4.1. Leaf Counting

Training setup. All the images from domain A1 to A4 of

the CVPPP 2017 LCC training set are combined together

to form a new training set named Ac. Ac is further divided

into four equal sections for four-fold cross-validation (i.e.

75% training and 25% validation in each fold).

Mean Squared Error (MSE) loss function and Adam op-

timizer [30] are used to train the leaf counting models. Most

models are trained with batch size of 16 and learning rate of

10−4, except MAE-DT uses a learning rate of 5 × 10−3.

The input images are all resized to 448× 448, with random

rotation (0◦−170◦) and flips applied for data augmentation.

Evaluation setup. The same metrics as the official LCC are

used for evaluation, which are Difference in Count (DiC),

Absolute Difference in Count (|DiC|), Mean Squared Error

(MSE) and Percentage Agreement (PA). Assuming N is the

total number of the evaluated images, ŷi is the predicted leaf

count on image i and yi is the corresponding ground truth,

these metrics are defined as:
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DiC =
1

N

N∑

i=1

(ŷi − yi),

MSE =
1

N

N∑

i=1

(ŷi − yi)
2,

|DiC| = 1

N

N∑

i=1

|ŷi − yi|,

PA =
100%

N

N∑

i=1

1[ŷi = yi].

During inference, all the model predictions are rounded

up to integers to match the nature of counting. Four-fold

cross validation is performed on Ac and the average per-

formance of the best model (obtaining the lowest validation

MSE) of each fold is reported. During testing, the best mod-

els obtained in the validation are ensembled by averaging

their predictions on the official test set.

Results. The validation set results from cross validation are

shown in Table 3. From this table, we observe that using

LoRA can help generalize foundation models to leaf count-

ing because LoRA consistently outperforms DT. For exam-

ple, the validation MSE is significantly improved from 1.4

to 0.95 for MAE, 1.25 to 0.88 for DINO, and 1.56 to 0.83

for DINOv2, respectively, after using LoRA. Over all the

models, DINOv2-LoRA obtains the best performance.

Table 3: LCC four-fold cross validation results. DiC and

|DiC| are reported in [mean (std)]. The best performance

w.r.t. each metric is highlighted in bold.

DiC ↓ |DiC| ↓ MSE ↓ PA [%] ↑
MAE-DT -0.03 (1.18) 0.83 (0.84) 1.40 39.1

MAE-LoRA 0.01 (0.97) 0.67 (0.71) 0.95 44.9

DINO-DT -0.11 (1.11) 0.81 (0.77) 1.25 37.7

DINO-LoRA 0.04 (0.94) 0.64 (0.69) 0.88 45.4

DINOv2-DT 0.01 (1.24) 0.93 (0.83) 1.56 32.0

DINOv2-LoRA 0.01 (0.91) 0.62 (0.67) 0.83 47.6

The test set results are shown in Table 4. This table

compares the performance of the evaluated models with

the champion of CVPPP 2017 LCC [14], which is a fully

fine-tuned ResNet50 [23]. For convenience, the test per-

formance of different models is mainly discussed based on

MSE (Table 4 (c)). We first discuss the average performance

over all test domains (i.e. A1 + A2 + ... + A5), which is

shown in the rightmost column of Table 4 (c). As shown,

MAE-DT and DINO-DT only reach MSE of 3.6 and 2.73,

respectively, which are much worse than that of [14], 1.56.

On the contrary, DINOv2-DT obtains a much better MSE

of 1.92. As DINOv2 is pre-trained on a curated dataset that

is larger than the one that DINO and MAE are pre-trained

on, this indicates that increasing the scale of pre-trained

source with carefully selected samples improves adaptabil-

ity of foundation models. Similar to the observation in cross

validation, using LoRA improves all the evaluated models,

resulting in comparable MSE with [14] – 1.79, 1.88 and

Table 4: LCC test results. The best performance under each

domain is highlighted in bold. For DiC and |DiC|, results of

A1 to A5 are reported in mean values only for better visu-

alization, while the average performance across all domains

(A1 + A2 + ... + A5) is reported under the column “All” in

[mean (std)].

A1 A2 A3 A4 A5 All

[14] -0.39 -0.78 0.13 0.29 0.25 0.19 (1.24)

MAE-DT -0.48 0.11 0.0 0.33 0.25 0.2 (1.89)

MAE-LoRA -0.7 -0.56 -0.45 0.41 0.18 0.12 (1.33)

DINO-DT -0.61 -1.0 -0.89 0.46 0.12 0.05 (1.65)
DINO-LoRA 0.24 -0.56) -0.54 0.35 0.14 0.13 (1.37)

DINOv2-DT -0.18 -0.78 -0.7 0.02 -0.16) -0.17 (1.38)

DINOv2-LoRA -0.03 -0.44 0.32 0.11 0.17 0.14 (1.27)

(a) DiC ↓

A1 A2 A3 A4 A5 All

[14] 0.88 1.44 1.09 0.84 0.90 0.91 (0.86)
MAE-DT 1.03 1.67 2.18 1.08 1.34 1.33 (1.35)

MAE-LoRA 0.88 1.0 1.05 0.99 1.0 0.99 (0.89)

DINO-DT 1.21 1.44 1.64 1.11 1.23 1.24 (1.09)

DINO-LoRA 0.79 0.78 1.14 0.98 1.0 0.99 (0.95)

DINOv2-DT 0.91 0.78 1.27 0.94 1.01 1.01 (0.95)

DINOv2-LoRA 0.82 0.67 1.32 0.88 0.97 0.96 (0.84)

(b) |DiC| ↓

A1 A2 A3 A4 A5 All

[14] 1.48 3 2.38 1.28 1.53 1.56
MAE-DT 1.76 5.67 8.43 2.16 3.66 3.6

MAE-LoRA 1.36 1.67 2.02 1.78 1.8 1.79

DINO-DT 2.12 3.67 4.61 2.17 2.72 2.73

DINO-LoRA 1.33 1.22 2.68 1.73 1.91 1.88

DINOv2-DT 1.64 1.22 3.05 1.61 1.94 1.92

DINOv2-LoRA 1.24 0.89 2.64 1.39 1.65 1.63

(c) MSE ↓

A1 A2 A3 A4 A5 All

[14] 33.3 11.1 30.4 34.5 33.2 32.9

MAE-DT 27.3 22.2 12.5 31 26.8 26.5

MAE-LoRA 33.3 33.3 30.4 29.8 30.6 30.5

DINO-DT 18.2 22.2 21.4 28 27.2 26.1

DINO-LoRA 39.4 44.4 32.1 32.7 33.2 33.5
DINOv2-DT 42.4 44.4 26.8 31.5 31.1 31.7

DINOv2-LoRA 33.3 44.4 17.9 34.5 31.1 31.1

(d) PA [%] ↑

1.63 for MAE, DINO and DINOv2, respectively. Over-

all, DINOv2-LoRA outperforms the other evaluated mod-

els, achieving similar performance with [14].

Note that LoRA dramatically improves the performance

on A2 and A3 compared to DT, especially for MAE and

DINO. In Table 4 (c), the 3rd column (A2) shows that the

MSE drops from 5.67 to 1.67 for MAE and 3.67 to 1.22 for
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DINO after applying LoRA; the 4th column (A3) presents

that the MSE drops from 8.43 to 2.02 for MAE and 4.61

to 2.68 for DINO after applying LoRA. As shown in Table

1 (Section 3), A2 and A3 contain fewer images than the

other domains. Also, A3 consists of tobacco images, which

are different from the other domains (Arabidopsis) and have

fewer leaf counts per plant. This observation indicates that

LoRA is a potential solution to the scenarios of lacking data

and domain shifts, both typical in plant phenotyping.

The findings in the LCC experiments are summarized as:

1. Fine-tuning foundation models using LoRA consis-

tently outperforms DT, among which DINOv2-LoRA

is the best, achieving similar performance with the

SoTA task-specific model.

2. LoRA may be able to mitigate the effects of data

scarcity and domain shifts.

4.2. Leaf Segmentation

Training setup. The training and validation splits in LSC

are identical as LCC. Following the best practice [33], cross

entropy and �1 loss are applied to mask predictions and

bounding box regression, respectively. All the models are

trained with the batch size of 16 and an Adam optimizer

with learning rate of 10−4. The input images are all resized

to 448×448 with random flip applied as data augmentation.

Evaluation setup. The same metrics as the official LSC

are used to evaluate different models, which are Best DICE

score among all leaves (BestDice), DICE on foreground

masks (FgBgDice), difference in leave count (DiffFG) and

absolute difference in leaf count (|DiffFG|). Here, DiffFG

and |DiffFG| function the same as DiC and |DiC| in LCC,

but are computed based on the number of instance masks.

Similar to LCC, four-fold cross validation is performed

on LSC and the average performance of the best model

(achieving the highest validation BestDice) of each fold is

reported. The predictions on the test set are ensembled by

integrating the predicted instance masks on each leaf from

all the best models obtained in the cross validation.

Results. Cross validation results are shown in Table 5: all

the evaluated models obtain high BestDice (close or equal

0.9) and FgBgDice (over 0.9), indicating their capability of

correctly segmenting leaves. On the other hand, the rela-

tively worse DiffFG and |DiffFG| (over 2) shows that these

models fail to detect all the presented leaves. For reference,

the worst |DiffFG| obtained in the previous LCC experi-

ments (Table 3) is 0.93. Comparing the performance be-

tween decoder tuning and LoRA on the same model, we

observe that using LoRA does not increase the overall seg-

mentation accuracy (BestDice and FgBgDice), but slightly

improves the counting performance.

Figure 2 shows visual results on validation set samples

from A1 to A4, which again verifies the findings in Table 5.

Table 5: LSC four-fold cross validation results. All metrics

are reported in [mean (std)]. The best performance w.r.t.

each metric is highlighted in bold.

BestDice ↑ FgBgDice ↑ DiffFG ↓ |DiffFG| ↓
MAE-DT 0.9 (0.05) 0.94 (0.05) -2.41 (2.18) 2.46 (2.12)

MAE-LoRA 0.9 (0.05) 0.94 (0.05) -2.35 (2.3) 2.42 (2.23)

DINO-DT 0.88 (0.07) 0.91 (0.08) -2.78 (2.19) 2.81 (2.15)

DINO-LoRA 0.88 (0.07) 0.92 (0.07) -2.36 (1.98) 2.39 (1.94)

Table 6: LSC test results. The best performance under each

domain is highlighted in bold. Results of A1 to A5 are

reported in mean values only for better visualization, while

the average performance across all domains (A1 + A2 + ...

+ A5) is reported under the column “All” in [mean (std)].

A1 A2 A3 A4 A5 All

[20] 0.92 0.9 0.92 0.89 0.9 0.9
MAE-DT 0.90 0.87 0.83 0.89 0.88 0.88 (0.08)

MAE-LoRA 0.89 0.87 0.81 0.89 0.87 0.87 (0.1)

DINO-DT 0.85 0.80 0.71 0.85 0.82 0.82 (0.13)

DINO-LoRA 0.85 0.82 0.74 0.85 0.82 0.82 (0.12)

(a) BestDice ↑

A1 A2 A3 A4 A5 All

[20] 0.94 0.88 0.91 0.94 0.93 0.93

MAE-DT 0.96 0.92 0.94 0.94 0.94 0.94 (0.04)

MAE-LoRA 0.96 0.92 0.95 0.94 0.95 0.95 (0.04)
DINO-DT 0.94 0.89 0.88 0.93 0.92 0.92 (0.1)

DINO-LoRA 0.95 0.90 0.90 0.93 0.93 0.93 (0.08)

(b) FgBgDice ↑

A1 A2 A3 A4 A5 All

[20] -2 -2.11 -1.7 -0.92 -1.16 -1.21

MAE-DT -1.30 -1.00 -0.71 -1.76 -1.49 -1.47 (1.81)

MAE-LoRA -1.27 -1.11 -0.64 -1.56 -1.33 -1.32 (1.82)

DINO-DT -1.70 -1.22 -0.02 -1.74 -1.32 -1.34 (2.04)

DINO-LoRA -1.00 -1.22 -0.25 -1.23 -0.99 -0.99 (1.88)

(c) DiffFG ↓

A1 A2 A3 A4 A5 All

[20] 2.06 2.11 1.73 1.12 1.31 1.36
MAE-DT 1.36 1.44 1.39 1.80 1.68 1.66 (1.63)

MAE-LoRA 1.45 1.33 1.68 1.63 1.63 1.62 (1.56)

DINO-DT 1.82 1.44 1.88 1.81 1.82 1.81 (1.63)

DINO-LoRA 1.55 1.22 1.79 1.54 1.58 1.58 (1.41)

(d) |DiffFG| ↓

In general, the segmentation quality of the evaluated models

seem to be close to the ground truth, and it is difficult to tell

the difference between DT and LoRA. The tendency to miss

leaves and parts of them (e.g. the stem) are also evident.

Table 6 compares the test set results of the evaluated

models against a SoTA model [20], which consists of
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A3

A4

Input GT MAE-DT MAE-LoRA DINO-DT DINO-LoRA

Figure 2: Visual results on LSC validation set. Samples from A1 to A4 are shown in different rows. The original images,

ground-truth masks, and model predictions of the samples are shown in the first, second, and the remaining columns, respec-

tively. The evaluated models miss some (small) leaves or stems, as observed in most samples.

ResNet101, FPN and DeepLab V3+ [8] . Comparing the

BestDice over all test domains (Table 6 (a) rightmost col-

umn), we find that MAE-DT and MAE-LoRA perform

closely to [20], with only 0.02 and 0.03 difference, while

DINO-DT and DINO-LoRA underperform. This sub-table

also shows that LoRA does not improve the evaluated mod-

els in leaf instance segmentation compared to DT.

Note that both MAE and DINO underperform in A3 (Ta-

ble 6 (a) fourth column), with about 0.05 and 0.1 BestDice

drop compared to their average performance. This may be

caused by downsampling the inputs. This resizing effect

is also a potential cause of missing leaves as observed in

validation. Besides, in both validation and testing, we do

not observe improvement after using LoRA. This may be

caused by the large difference between the number of train-

able parameters in the FCN + Mask RCNN decoder (20%

of the whole model) and those added by LoRA (0.34% of

the whole model).

The findings of the LSC experiments are summarized as:

1. Adapting MAE for leaf instance segmentation

achieves slightly worse results than [20], while the

fine-tuned DINO models perform much worse.

2. LoRA does not outperform DT potentially due to the

heavy imbalance between the number of parameters

added by the decoder and LoRA.

3. The evaluated models can miss leaves or stems, al-

though this may be caused by resizing of the inputs.

4.3. Leaf Disease Classification

Training setup. Following the first place solution [18] in

the Cassava Leaf Disease Classification competition, the Bi-

Tempered Logistic Loss [1] and Adam optimizer are used

to train the classification model. MAE-DT is trained with

learning rates starting from 10−2 and then down-scaling by

a factor of 10 at epoch 25 and 50, while all the other mod-

els are trained with a consistent learning rate of 10−4. The

training images are first randomly cropped and then resized

to 448×448, followed by a series of random transformation

as used in [18].

Evaluation setup. Per-class accuracy is reported in our

validation set, while only overall accuracy is reported in
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the official test set. Five-fold cross validation is performed

and the average performance of the best models (achieving

the best overall accuracy) obtained in each fold is reported.

During testing, the best models obtained in the cross valida-

tion are ensembled by averaging their predicted scores.

Results. Table 7 presents the cross validation results on

the validation set. The table shows that LoRA consistently

improves model generalization on the Cassava leaf disease

classification task compared to DT. After applying LoRA,

the overall accuracy (the rightmost column) is raised from

77.9% to 88.2% on MAE, 85% to 88.2% on DINO, and

86.6% to 90.3% on DINOv2. In general, DINOv2-LoRA

outperforms all the other evaluated models on every class,

while MAE-DT performs the worst.

Table 7: Cross validation accuracy [%] on Cassava disease

classification. The column “All” reports the average accu-

racy across all classes. The highest accuracy under each

class is highlighted in bold.

CBB CBSD CGM CMD H ALL

MAE-DT 37.1 50.4 47.3 94.7 61.1 77.9

MAE-LoRA 59.6 80.3 76.1 97.2 72.4 88.2

DINO-DT 51.9 73.3 70.0 95.6 68.9 85.0

DINO-LoRA 60.9 79.1 78.1 97.0 72.1 88.2

DINOv2-DT 57.9 73.7 70.4 96.7 74.1 86.6

DINOv2-LoRA 67.0 82.1 81.9 97.6 76.9 90.3

As Table 2 (Section 3) shows, the number of training

images in the CMD class is significantly larger than that

of the remaining classes. This severe class imbalance is

directly reflected in the cross validation results as shown

in Table 7, where all the evaluated models exhibit supreme

accuracy on CMD. However, LoRA shows potential in ad-

dressing class imbalance. Comparing MAE-DT and MAE-

LoRA, the accuracy is dramatically improved from 36.3%
to 59.6%, 50.7% to 80.3%, 46.3% to 76.1%, and 62.4% to

72.4% on CBB, CBSD, CGM and H, respectively. The per-

formance of DINO-LoRA and DINOv2-LoRA also shows

clear improvement on these minority classes.

Table 8 compares the test set accuracy of the cham-

pion of the Cassava Plant Disease Classification competi-

Table 8: Test set accuracy [%] on the Cassava dataset.

Method Accuracy

[18] 91.3
MAE-DT 77.2

MAE-LoRA 88.8

DINO-DT 83.9

DINO-LoRA 89

DINOv2-DT 86.1

DINOv2-LoRA 89.7

tion [18], which ensembles ResNext50 [48], ViT-B, Effi-

cientNet B4 [45] and MobileNet V3 [26], with that of the

evaluated models. The observation in the test set is similar

to that of the validation set: LoRA consistently improves

the model adaptation, with DINOv2-LoRA performing the

best, but slightly worse than [18]. Note that [18] ensembles

four different architectures while we only use ViT-B.

In summary, the findings in the Cassava experiments are:

1. LoRA consistently enhances model adaptation in leaf

disease classification. Among the evaluated models,

DINOv2-LoRA performs the best, achieving slightly

worse performance than SoTA.

2. LoRA shows potential of addressing class imbalance.

5. Conclusion
This paper demonstrates the possibility of adapting a

foundation model for multiple plant phenotyping tasks

through extensive experiments. Among the evaluated foun-

dation models, DINOv2-LoRA achieves the best perfor-

mance in leaf counting and disease classification, which

is close to that of the SoTA model for each task. In leaf

segmentation, MAE outperforms DINO, approaching the

SoTA level. In general, we find that each foundation model

can be efficiently adapted for all the three tasks with accept-

able performance.

In terms of the tuning methods, LoRA consistently out-

performs decoder tuning in leaf counting and disease classi-

fication. Moreover, LoRA exhibits the potential of mitigat-

ing issues related to data scarcity, domain shifts, and class

imbalance. However, in leaf segmentation, LoRA fails to

further improve the foundation models over decoder tuning.

This may be due to the segmentation decoder introducing

notably more parameters than LoRA.

In summary, our work pioneers systematic assessment of

the adaptation of foundation models for plant phenotyping

tasks. It not only serves as an essential benchmark in this

field but also discusses the optimal use-cases of different

foundation models and tuning methods. The continued de-

velopment of general-purpose models and adapters should

draw more attentions of the plant phenotyping community.
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